COMPONENT 1 – NEWTONIAN PHYSICS

MARK SCHEME

GENERAL INSTRUCTIONS

The mark scheme should be applied precisely and no departure made from it.

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark (except for the extended response questions).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

A LEVEL PHYSICS Specimen Assessment Materials 83

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward

bod = benefit of doubt

0	uosti	on	Marking details			Marks a	vailable		
L G	uesin			AO1	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	The single point within a body at which the entire weight of the	1			1		
			body may be considered to act						
		(ii)	Increase θ gradually until the block topples (1)	1					
			Measure θ with a protractor just before the block topples /						
			measure height and length of slope and calculate (1)	1			2		2
	(b)	(i)	$V = 0.6 \times 0.4 \times 0.1$ and $M = \rho \times V$ used correctly (1)	1					
			Attempt at equating moments (1)	1					
			$(T\sin\theta (1)) \times 1.2 =$		1				
			$9.6 \times 9.81 \times 1.8$ (1) for correct moments		1				
			T = 220 [N] (1)		1		5	4	
		(ii)	$F = 220 \cos 40^{\circ} (\text{ecf})$ (1)		1				
			F = 169 N (1) UNIT mark		1		2	2	
			Question 1 total	5	5	0	10	6	2

Question	Marking details	Marks available						
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
2 <i>(a)</i> (i)	Correct use of $v^2 = u^2 + 2ax$ (i.e. $0 = 6^2 - 2 \times 9.81 \times x$) (1) x = 1.8 [m] (1) Total height = 12.8 [m] (1)	1	1		3	3		
	$v^{2} = 2 \times 9.81 \times 12.8 \text{ (ecf) } v = 15.9 \text{ [m s}^{-1} \text{] (1)}$ $t_{up} = \left(\frac{0-6}{-9.81}\right) = 0.6 \text{[s] (1)}$ $t_{down} = \left(\frac{15.9(\text{ecf})-0}{9.81}\right) = 1.6 \text{[s] (1)}$ Total time = 2.2 [s] (1) Alternative solution: $t_{up}: s = ut + \frac{1}{2} at^{2}$ $1.8 = 6t - 4.9t^{2}$ $t = 0.6 \text{[s] (1)}$ $t_{down}: s = ut + \frac{1}{2} at^{2}$ $12.8 = 0t + 4.9t^{2} (1)$ $t = 1.6 \text{[s] (1)}$ Total time = 2.2 [s] (1)	1	1		4	4		

<i>(b)</i>	AO3 (1) (1) AO2 Air resistance acts on the ball (1) AO2		1	1	3		
	Question 2 total	3	6	1	10	7	0

	Juactia		Marking datails	Marks available						
6	lueslio	7 11		AO1	AO2	AO3	Total	Maths	Prac	
3	(a)	(i)	$0.50 \times 40 = 0.50 \times 30 + 0.16 v$ [or equivalent] (1)	1						
			$v = 31.25 [{\rm ms^{-1}}] (1)$		1		2	2		
		(ii)	External forces act upon the system [or by implication] (1)			1				
			[Specifically] the shaft exerts a force upon the head of the							
			hockey stick (1)			1	2			
			[or any other reasonable specific force – accept air resistance]							
	(b)		Using Newton's 2 nd law (1)	1						
			$E = \Delta momentum$	1						
			$r - \frac{1}{\text{time to change}}$ [or by implication] (1)							
			= 2 000 [N] [ecf] (1)		1		3	1		
	(C)	(i)	$(\frac{1}{2} \times 0.5 \times 40^2) - (\frac{1}{2} \times 0.5 \times 30^2) - (\frac{1}{2} \times 0.16 \times 31.25^2) = [100 \text{ J}]$	1			1	1		
		(ii)	Use of $E = mc \Delta T$ (1)	1						
			$100 - 74 \log(1/4)$							
			$\Delta I = \frac{1}{0.16 \times 850} = 0.74 [^{3}C](1)$		1		2	1		
			Question 3 total	5	3	2	10	5	0	

6	Juostia	'n	Marking details			Marks a	vailable			
	Ruestic	/11		AO1	AO2	AO3	Total	Maths	Prac	
4	(a)		Force × distance moved in direction of force [or equivalent, e.g. component of force in direction of movement × distance moved, or $W = Fx \cos \theta$]	1			1			
	(b)	(i)	$E_p \text{ lost} = 70 \times 9.81 \times 120 \sin 20^\circ (1) \text{ [or by implication]}$ = 28 000 [J] [28 148] (1) [Use of 10 for $g - 1^{\text{st}}$ mark lost]	1	1		2	2		
		(ii)	Use of E_k for either $v = 6 \text{ m s}^{-1}$ or $v = 21 \text{ m s}^{-1}$ (1) At A, $E_k = \frac{1}{2} \times 70 \times 6^2$ [= 1 260 J] and at B, $E_k = \frac{1}{2} \times 70 \times 21^2$ correct values of E_k calculated (1) [=15 435 J] $\Delta E_k = 14 \ 175$ [J] (1) [If $(21 - 6)^2$ calculated $\rightarrow 1$ mark only]	1	1 1		3	2		

	Question 4 total	5	5	0	10	7	0
	Difference attempted $(3.36 - 1.69)$ ecf on both values (1) $F = answer \times 70 \text{ kg} = 117 [\text{N}]$ (1) N.B. $\times 70 \text{ kg}$ may be included in the solution at any point						
	Alternative solution: $g\sin\theta = 3.36 [\text{m s}^{-2}] (1)$ $a = \frac{v^2 - u^2}{2 \text{s}} = 1.69 [\text{m s}^{-2}] (1)$						
	ma = 118.1 [N] (1) Difference attempted (234.9 – 118.1) ecf on both values (1) F = 117 [N] (1)						
	Alternative solution: $mg\sin\theta = 234.9[N]$ (1)						
	Correct x [120 m] used (1) 28 184 - 14 175 (ecf on both) = $F \times 120$ (1) [or by implication] F = 117 [N] (1)	1	1 1		4	3	
(C)	Use of $W = Fx$ (1) [or by implication]	1					

	Quactic		Marking details		Marks available						
	Questi	20		Marks availableAO1AO2AO3TotalMathsare) (1)1143adient143112111211121112111211121	Prac						
5	(a)		All points plotted correctly (to within half a small square) (1) With error bars plotted correctly for temperature (1) Suitable scales on both axes with titles and units (1) Suitable lines of maximum gradient and minimum gradient drawn (1)		1 1 1 1		4	3	4		
	(b)	(i) (ii)	Coming into contact with hot water Stir water / take readings at eye level	1			2		2		
	(C)	(i)	Method for finding the gradient (1) maximum $= \frac{98-30}{100} = 0.68 \pm 0.02 \ [^{\circ}C \ s^{-1}]$ and minimum $= \frac{94-34}{100} = 0.60 \pm 0.02 \ [^{\circ}C \ s^{-1}]$ (1)	1	1		2	1	2		
		(ii)	So mean gradient = 0.64 ± 0.02 [°C s ⁻¹] (1) Absolute uncertainty calculated (1) Percentage uncertainty - accept 3 to 8% (1)		1 1 1		3	2	3		

	Vuoctio		Marking dataila			Marks a	vailable		
6	uesiic	201		AO1	AO2	AO3	Total	Maths	Prac
5	(C)	(iii)	Equate $c = \frac{\text{Power}}{m \times \text{gradient}}$ (1) Correct calculation of $c = 4200 [\text{J kg}^{-1} ^{\circ}\text{C}^{-1}]$ (1) ecf Uncertainty – accept 130 – 340 (1)			1 1 1	3	3	3
	(d)		 Conclusions C0 – As time increases, temperature increases. C1 – Values of temperature are lower. C2 – Line of graph is not straight. C3 – Gradient is decreasing. C4 – Initial temperature is the same. C5 – Value of specific heat capacity is too low or lower or less than 4200 [J kg⁻¹ °C⁻¹]. C6 – Measured value of specific heat capacity is not constant [because the gradient is not constant]. Evaluations E0 – Line should be straight or disagrees with theory. E1 – Results need checking, as they are not what would be expected. E2 – Statement relating to "lost" energy. E3 – Heat is lost or energy is given to the container. E4 – More heat loss occurs at higher temperatures. E5 – Due to a greater temperature difference between water and air / surroundings / outside of container. All of C1 – C4 (acceptable for C0 to be omitted) are present. 			6	6		6
			All of C1 – C4 (acceptable for C0 to be omitted) are present. Either C5 or C6 is present.						

Question 5 total	3	8	9	20	9	20
0 marks No attempt made or no response worthy of credit.						
There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure.						
1-2 marks 1 from C0 – C2 present 1 from E0 – E3 present.						
There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure.						
3-4 marks Expect 2 from C0 – C4. Expect 2 from E0 – E3.						
There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.						
E0, E3 and E4 are present (E5 may be present for the best candidates).						

	Question	Marking dataila			Marks a	vailable			
	luesii	711		AO1	AO2	AO3	Total	Maths	Prac
6	(a)		A body moves with SHM if its <u>acceleration</u> : is directly proportional to its displacement from a fixed point (1) is always directed towards that fixed point (1)	1 1			2		
	(b)		Use of $f = \frac{1}{T}$ (1) $f = \frac{1}{2 + 1} = 2.5$ Hz (1) UNIT mark	1	1		2	1	
	(c)		$\omega = \frac{(2\pi)}{0.4} = 15.7 \text{ [rad s}^{-1}\text{]}$	1			1	1	
	(d)	(i)	$v_{\text{max}} = \omega A(1)$ = (15.7)(0.05) = 0.79 [m s ⁻¹] (1)	1	1		2	1	
		(ii)	$a_{\max} = \omega^2 A(1)$ =(15.7 ²)(0.05) = 12.3 [m s ⁻²] (1)	1	1		2	1	
		(iii)	$a = \omega^2 x (1)$ = (15.7 ²)(0.02) = 4.93 [m s ⁻²] (1) Downward (1)	1	1		3	2	

	Juoctio	n	Marking details	Marks available					
	ຊູບຮຽແບ	11		AO1	AO2	AO3	Total	Maths	Prac
6	(e)	(i)	Maximum deceleration $[12.3 \text{ m s}^{-2}] > g(1)$ Box's downward acceleration can't be greater than $g(1)$ So platform slows down quicker than box (1) $mg = m\omega^2 x(1)$ So $x = \frac{9.81}{15.7^2}$ (1)			1 1 1 1	5	2	
		(ii)	Box acts as a moving observer and / or source (1) Wavelength shift due to the Doppler effect (accept red shift or blue shift) (1) $\Delta\lambda \alpha v \text{ or } \frac{\Delta\lambda}{\lambda} = \frac{2v}{c} \text{ or } \frac{\Delta\lambda}{\lambda} = \frac{v}{c}$ explained (1)		1 1 1		3		
			Question 6 total	7	8	5	20	8	0

0.00	stion	Marking dataila			Marks a	vailable		
Que	Suon		AO1	AO2	AO3	Total	Maths	Prac
7	(a)	Weight or gravity identified as one of the forces (1) (diagram acceptable) [Upward] force due to [convection] air current or drag or air resistance (accept answers similar to wind push) is the other force or diagram e.g. (1) force due to air current weight The second force depends on the [cross-sectional] area of the smoke particle (1) Weight depends on [mass and therefore] volume (1) The ration $\frac{Area}{Volume}$ increases when size decreases (1)	1	1 1 1		5		
	(b)	Lopez argument based on the energy released in a nuclear reaction (1) Daxon argument based on the energy released in a chemical reaction (1)		1		2		

<i>(c)</i>	 U-235 points U1 – Used for nuclear bomb. U2 – Used for nuclear power stations. U3 – In fuel rods. U4 – Detonators for hydrogen bombs / fission bombs. U5 – U-235 fission nucleus. U6 – Induced fission. Nuclear power N1 – Dangerous (explosion risk). N2 – Leak risk or nuclear waste. N3 – Low CO ₂ . N4 - No acid rain. N5 – No climate change. Nuclear bomb B1 – Mass extinction.			
	 B2 – Deterrent to war. Depleted uranium D1 – Spreads radiation. D2 – Better missiles. D3 – Cheap materials. Conclusions C1 - Pros and cons discussed for nuclear power (no actual conclusion is necessary). C2 - Pros and cons discussed for nuclear bomb (no actual conclusion is necessary). C3 - Pros and cons discussed for DU (no actual conclusion is necessary). ALL CONCLUSIONS MUST BE VALID AND JUSTIFIABLE. 			

PMT

5-6 marks		6	6	
At least U1, U2, U3 and U5 present.				
At least N1, N2 and N3 present.				
B1 and B2 present				
At least D1 present and either D2 or D3				
C1 C2 and C3 present				
There is a sustained line of reasoning which is coherent				
relevant substantiated and logically structured				
Televant, substantiated and logically structured.				
3-4 marks				
Expect 11 and 12				
Expect N1 and N2				
Expect NT and N2.				
Either D1 or D2 or D2				
Either C1 or C2 or C2				
Either CT of C2 of C3.				
There is a line of reasoning which is partially scherent largely				
relevent supported by some syldenes and with some structure				
Televant, supported by some evidence and with some structure.				
1-2 marks				
Fither 11 or 112				
Either N1 or N2 or N2 or N4 or N5				
There is a basic line of reasoning which is not coherent largely				
irrelevent, supported by limited evidence and with yery little				
inelevant, supported by inflited evidence and with very little				
0 marks				
Villaino No attempt mode er pe response werthy of gradit				
No allempl made of no response worthy of credit.				

(d)	Mass = $500 \times (10^{-5})^2$ (1) Activity = $12.3 \times 10^6 \times 0.05 = 0.63$ (1) Similar or slightly higher or 50% higher (1)		1 1 1		3	2	
(e)	Insoluble more difficult to remove / excrete (1) Therefore stays in the body longer (1) U-235 is removed from the mix to produce DU hence the increased ratio (1) Therefore the claim is correct and answer well-reasoned (1)		1	1	4		
	Question 7 total	2	10	8	20	2	0

COMPONENT 1: NEWTONIAN PHYSICS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	5	5	0	10	6	2
2	3	6	1	10	7	0
3	5	3	2	10	5	0
4	5	5	0	10	7	0
5	3	8	9	20	9	20
6	7	8	5	20	8	0
7	2	10	8	20	2	0
TOTAL	30	45	25	100	44	22

PMT